JIANGSU SFERE ELECTRIC CO., LTD.

Адрес: Д. 1, ул. Дундин, г. Цзянинь, пров. Цзянсу, Китай

Тел: +86-510-86199292 +86-510-86199063 +86-510-86199069 +86-510-86199073

E-mail: export@sfere-elec.com

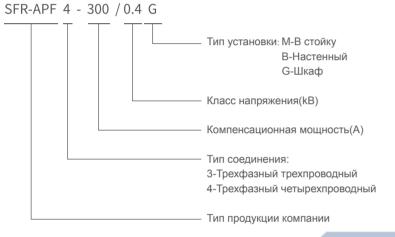
www.sfere-elec.com

УПРАВЛЕНИЕ КАЧЕСТВОМ ЭЛЕКТРОЭНЕРГИИ

СОДЕРЖАНИЕ

Активный фильтр гармоник SFR-APF	01
Статический генератор реактивной мощности SFR-SVG	09
Интеллектуальный конденсатор SFR-M	14
Интеллектуальный конденсатор SFR-L	18
Контроллер компенсации реактивной мощности WGK-31	25
Низковольтный комбинированный выключатель LBFK	28
Блок динамического переключения LBT	30
Микропроцессорное устройство релейной защиты SDP-5100-A	32

Реализованные проекты


Sfere E

Активный фильтр гармоник SFR-APF

Общие сведения

Активный фильтр гармоник является силовым электронным устройством нового типа для динамической фильтрации гармоник и компенсации реактивной мощности. Он может фильтровать и компенсировать гармоники (как амплитуду, так и частоту) и динамически компенсировать реактивную мощность в реальном времени, чтобы преодолеть недостатки традиционных методов подавления гармоник и компенсации реактивной мощности традиционных фильтров. Устройство может использоваться на электроэнергетических, металлургических, нефтяных, портовых, химических, промышленных и горнодобывающих предприятиях.

Описание модели

Принцип работы

Фильтр использует токовый сигнал, генерируемый трансформатором тока, для выделения основной гармоники нагрузки. Сигнал с остальными гармониками отправляется во внутренний преобразователь мощности на IGBT в виде PWM для генерации тока компенсации с противоположной фазой основного гармонического тока, чтобы осуществить функцию динамической фильтрации в реальном времени.

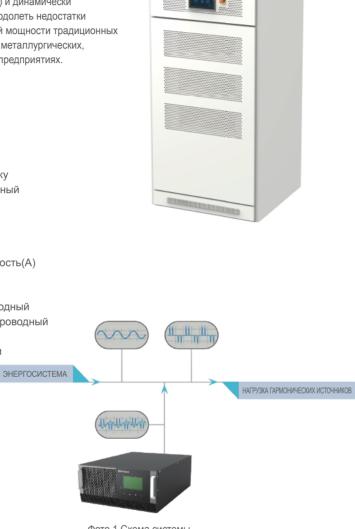


Фото 1 Схема системы

Ознакомление с ключевым аппаратным обеспечением

Модуль IGBT компании Infineon

- Высокоинтегрированный трехуровневый модуль
- Низкое напряжение и высокая надежность
- Снижение потерь проводимости и потерь при включении и выключении

Самый новый чип управления TI

• Двухъядерный 32-битный CPU+2CLA, высокопроизводительный промышленный чип TMS320F28377D с высокой точностью управления.

• Несколько 16-разрядных ADC для высокоточной выборки.

Характеристика продукции

• Гибкий прикладной проект

Модульное проектирование, с удобством расширения, до 10 модулей, работающих параллельно

Вставные или настенные модули для различных сред установки

Возможно подключение по 3- фазной 3-проводной или 3-фазной 4-проводной схемя, также имеется резервный N-проводный зажим для соответствия условиям эксплуатации.

Положение установки СТ гибкое, как со стороны источника питания, так и со стороны нагрузки

• Отличная фильтрующая способность

Максимальное количество фильтрации составляет 50, а частота фильтрации гармоник превышает 97%.

Допускается выбор несколько режимов компенсации для осуществления распределения активной фильтрации, реактивной компенсации и компенсации несбалансированного тока по потребностям.

Полный объем реактивной компенсации.

Совершенная трехфазная стратегия для достижения активной / реактивной / фазовой компенсации дисбаланса.

Трехуровневая главная цепь с более низком энергопотреблением и более высокой эффективностью.

Общее время отклика составляет менее 5 мс, скорость управления и стабильность переходного процесса повышаются.

• Совершенная защита оборудования и системы

Защита оборудования от внешних электрических неисправностей, включая короткое замыкание шины, перенапряжение и недонапряжение, превышение частоты и пониженную частоту, ошибку чередования фаз, обратную последовательность тока и т.д.

Защита оборудования от внутренних неисправностей, включая защиту от сверхтока, тепловую защиту IGBT и т.д.

Автоматический выбор тока при изменении рабочей среды.

Избегать от резонанса, автоматически держать далеко от точки резонанса

• Гуманизированный опыт человеко-компьютерного взаимодействия Для человеко-компьютерного взаимодействия можно выбрать 7 или 8-дюймовый сенсорный ЖК-экран

С помощью графического интерфейса дисплея пользователи могут четко понимать состояние улучшения качества электроэнергии волновой диаграммы, спектральной диаграммы гармоник, THDi, THDu, среднеквадратичного значения тока, коэффициента мощности и других показателей до и после компенсации.

• Пройдена сертификация

«Фильтрующее устройство активной мощности» JB / Т 11067-2011

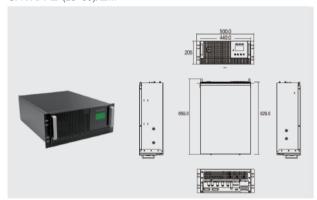
«Параллельное электрофильтрующее устройство активной мощности для строительства электрооборудования» JG/T 417-2013

«Параллельное электрофильтрующее устройство активной мощности низкого напряжения для связи» YD/T 2323-2011

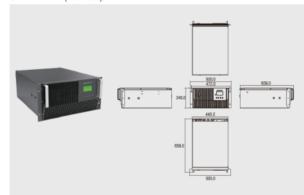
Технические характеристики

Параметры	Тип в стойку			Настенный тип			Полный шкафный тип		
Сетевое напряжение		400/690B(-40%~+20%)							
Сетевая частота		50/60 Гц ± 5 Гц							
Тип соединения		Tpex	кфазный тре	ехпроводный	і́, трехфазн	ый четыре	хпроводный	й	
Мощность	2A	50A	75A	100A	50A	75A	100A	25~400A	
Номер гармоники	2-	-50 компенс	аций гармон	ник, устранен	ние всех ил	и выбранн	ых номеров	з гармоник	
Гармоническая настройка		Ках	кдый номер	гармоники м	иожет быть	установле	н отдельно		
Эффективность гармонической компенсации					≥97%				
Время полного ответа					≤5mc				
Тип компенсации	Гармоническая компенсация, компенсация реактивной мощности, трехфазная компенсация дисбаланса						енсация дисбаланса		
Способность параллельной работы	До 10 модулей								
Потеря активной мощности		•	<3% от ном	инальной вь	иходной мо	щности ус	гройства		
Функция отображения (пользовательский интерфейс)	реального в	времени, вол	нистая крива	я данные мод я линия, наст информация і	ройка парам		(опция), зап системы и м реального в кривой лини	й ЖК-дисплей прос данных модуля в режиме времени, волнистой ии, настройки в, запроса записей и венной.	
Тип защиты	Защита от перенапряжения и недонапряжения, превышения частоты и пониженной частоты, обратной последовательности входного напряжения, сверхтока, перегрева, автоматическая токоограничивающая защита от перегрузки, короткого защита от короткого замыкания шины и т.д					гоматическая			
Тип охлаждения	Принудительное воздушное								
Шум	≤65 дб IP20 (можно заказать более высокий класс защиты)								
Класс защиты									
Связь		Дистанцион	ная связь Р	RS485/RS232	2/можно вы	брать фун	кцию эфирн	юй сети	

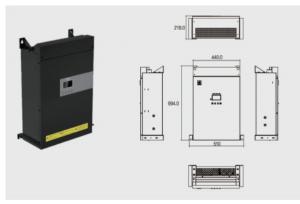
Размеры и среда установки

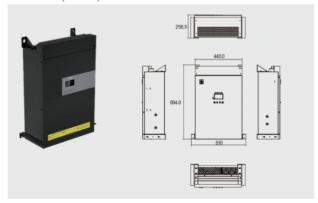

	Настенный тип (сенсорный экран)			Тип стйки				Полный шкафный тип (Централизованный мониторинг при помощи сенсорного экрана)
Номинальный ток компенсации/А	50	75	100	25	50	75	100	25A~400A
Вес/кг	38	45	45	33	33	34	38	400
Размер (мм) ширина × глубина × высота	510× 218× 694	510× 256.5× 694		500× 6	59× 205	500× 6	59× 245	800× 800× 2200
Тип ввода	Ввод	сверху		Ввод сзади			Ввод сверху/снизу	

Цвет RAL7032 (можно предоставить другие цвета по требованиям)

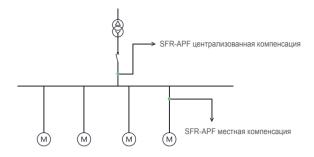

Температура: $-25\,^{\circ}\text{C} \sim +45\,^{\circ}\text{C}$ Влажность: $5\% \sim 90\%$ Среда установки
Высота над уровнем моря: Высота над уровнем моря <1000м.
(большая высота требует выбора других номиналов)
Класс загрязнения: в области сильного загрязнения может работать нормально

Примечание: можно заказать специальные спецификации!


Габаритные размеры модуля типа в стойку SFR-APF \square -(25~50)/ \square M


Габаритные размеры модуля типа в стойку SFR-APF□-(75~100)/□М

Габаритные размеры модуля настенного исполнения SFR-APF \square -50/ \square B



Габаритные размеры модуля настенного исполнения SFR-APF \square -(75~100)/ \square B

Применение продукции

Активный фильтр гармоник серии SFR-APF может гибко выбрать тип компенсации в соответствии с реальной ситуацией распределения нагрузки и требуемого эффекта компенсации. Компенсация на месте выполняется для отдельного источника гармоник, который генерирует большой гармонический ток; а централизованная компенсация выполняется для рассеянного источника гармоник.

Эмпирическое значение и рекомендуемый вариант для коэффициента искажения гармонического тока в различных отраслях

Тип отраслей	Источник гармоник	Эмпирическое значение	Способ управления
Метро, тоннель, аэропорт	Инверторный вентилятор, энергосберегающая лампа, затемнитель	15%	Централизованное управление
Центр данных, аппаратная связи, банк	Коммутационный источник питания, инверторный кондиционер, автоматическая лестница	20%	Централизованное управление
Офисное здание, бизнес-центр	Энергосберегающая лампа, компьютер, лифт, инверторный кондиционер	20%	Централизованное управление
Театр, спортивный центр	ИБП, затемнитель, энергосберегающая лампа	25%	Централизованное управление
Производство автомобилей Электросварщик		30%	Централизованное управление
Больница	Ультразвуковой прибор, ядерно-магнитный резонанс, компьютерный томограф, рентгеновский аппарат, инверторный кондиционер	20%	Централизованное управление или местная компенсац
Нефтяная, химическая промышленность Большой выпрямитель, инверторы		35%	Централизованное управление или местная компенсаци
Металлургия	Печь промежуточной частоты, электродуговая печь, прокатный стан	40%	Централизованное управление или местная компенсац

Таблица быстрого выбора

Мощность трансформатора (кВА)	Мощность и количество активных фильтров (трехфазный четырехпроводный)	Мощность и количество активных фильтров (трехфазный трехпроводный)
200	SFR-APF4-50/0.4	SFR-APF3-50/0.4
250/315	SFR-APF4-50/0.4	SFR-APF3-75/0.4
400	SFR-APF4-75/0.4	SFR-APF3-75/0.4
500/630	SFR-APF4-75/0.4	SFR-APF3-100/0.4
800	SFR-APF4-100/0.4	SFR-APF3-150/0.4
1000	SFR-APF4-100/0.4	SFR-APF3-200/0.4
1250	SFR-APF4-150/0.4	SFR-APF3-250/0.4
1600	SFR-APF4-200/0.4	SFR-APF3-300/0.4
2000	SFR-APF4-200/0.4	SFR-APF3-400/0.4
2500	SFR-APF4-300/0.4	SFR-APF3-250/0.4 ×2
Сфера применения	Коммерческий центр, офисное здание, гостиница, больница, центр данных, театр и другие места однофазной нагрузки	Химическая промышленность, металлургия, связь, текстиль, бумага, печать, табак, автомобили, порты и другие места трехфазной нагрузки

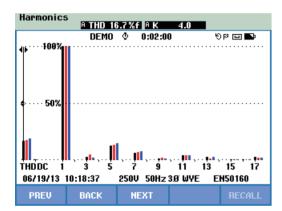
Примечание: Типы M, B и G могут быть выбраны в соответствии с ситуацией.

05

Типовые варианты применения

Современные здания - интеллектуальные современные офисные центры

Характеристики гармоник

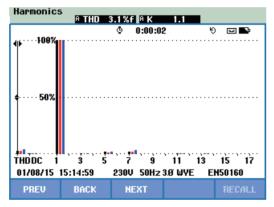

В связи с наличием многочисленных нелинейных нагрузок в здании в электрической сети генерируется большое количество 3, 5 и 7 гармоник.

Описание проблемы

Использование большого количества компьютеров, лифтов, энергосберегающих ламп и других нелинейных нагрузок в офисном здании вызывает серьезное искажение тока и напряжения, и ток нейтрали слишком велик, что приводит к отключению из-за старения N-проводной изоляции.

Анализ эффекта

Коэффициент искажения гармонического тока каждой фазы для входов офисного здания значительно снижается, что эффективно предотвращает возникновение нейтральных аварийных перегрузок.


До компенсации

Цель управления

Повысить надежность электросети, эффективно защищать нейтральную линию и снизить скрытые угрозы безопасности

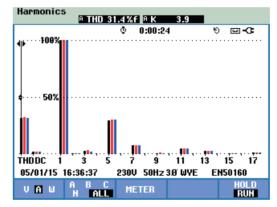
Меры по управлению

Централизованное управление вводами офисного здания осуществляется при помощи фильтров активной мощности серии SFR-APF4

После компенсации

Сталелитейная промышленность - крупный металлургический центр обработки

Характеристики гармоник

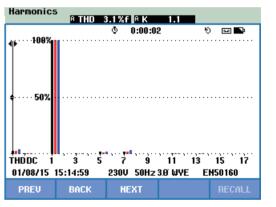

В металлургической системе имеется большое количество безударных нагрузок (дуговые электропечи, прокатные станы), и при работе инвертора генерируются 2-13 гармонических токов.

Описание проблемы

Ток системы электропитания искажен, система управления ПЛК часто нарушена, реле также многократно ошибочно срабатывало и даже

Анализ эффекта

Коэффициент искажения гармонического тока значительно снижается, что существенно повышает качество электроэнергии системы электропитания и позволяет избежать ошибочного срабатывания или выгорания.


До компенсации

Цель управления

Уменьшить влияние гармонического тока на электросеть, обеспечить безопасную работу оборудования, уменьшить влияние гармоник на различные элементы управления ПЛК, и уменьшить потери, вызванные ошибочным срабатыванием оборудования.

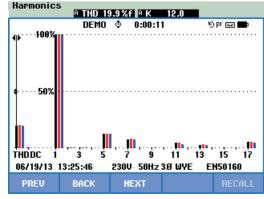
Меры по управлению

Активный фильтр серии SFR-APF3 используется для управления гармониками в ветви распределения мощности.

После компенсации

Отрасль связи - крупный центр управления данными

Характеристики гармоник

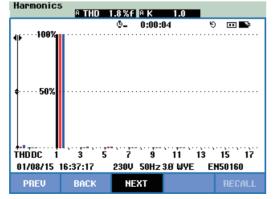

В системе связи имеется большое количество ИБП и коммутационных источников питания, что приведет к внезапному увеличению 5, 7 и 11 гармоник в системе.

Описание проблемы

Нагрузка - ИБП, вводный выключатель отключается без причины, и гармонические помехи являются серьезными.

Анализ эффекта

Коэффициент искажения гармонического тока значительно снижается, что эффективно решает проблему отключения и радиопротиводействия против систем связи


До компенсации

Цель управления

Повышение надежности электроснабжения, устранение радиопротиводействия гармоник против систем связи и продление срока службы оборудования.

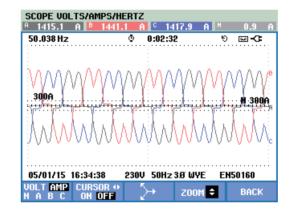
Меры по управлению

Управление ИБП на месте осуществляется при помощи активного фильтра серии SFR-APF4

После компенсации

Нефтехимическая промышленность - крупные нефтяные вышки

Характеристики гармоник

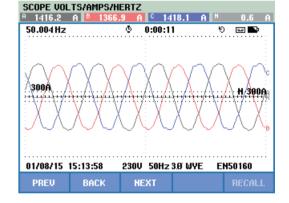

Используется большое количество инверторов, и гармонические токи в основном 5, 7, 11, 13 и 17.

Описание проблемы

Шкаф компенсации емкости часто поврежден, коэффициент мощности слишком низкий, что приводит к штрафу из-за реактивной мощности

Анализ эффекта

После управления гармонический ток значительно уменьшается, коэффициент искажения уменьшается, надежность компенсации емкости значительно повышается, коэффициент мощности стабильно компенсируется выше 0,95.


До компенсации

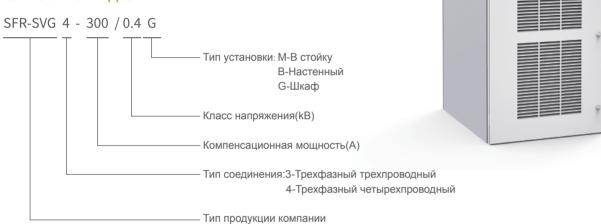
Цель управления

Уменьшить погрешность приборов измерения мощности, чтобы обеспечить точность управления электроэнергией и сборов

Меры по управлению

Централизованное управление гармоническими токами осуществляется при помощи активными фильтрами серии SFR-APF3

После компенсации

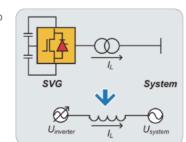


Статический генератор реактивной мощности серии SFR-SVG

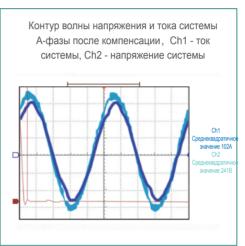
Общие сведения

SFR-SVG - это новое поколение регулируемого статического генератора реактивной мощности (Static Var Generator , далее именуемое «SVG»). SFR-SVG представляет собой представитель новейших технологических применений в техническом мире по компенсации реактивной мощности. SFR-SVG подключен параллельно к электросети, который эквивалентно переменному источнику реактивного тока, его реактивный ток может гибко регулироваться для автоматической компенсации реактивной мощности, требуемой системой. С одной стороны, он эффективно решает проблему компенсации переключения шунтирующих конденсаторов помех от реактивной мощности, с другой стороны, он может заглушать или управлять гармониками в соответствии с фактическими требованиями пользователей для очистки среды электросети.

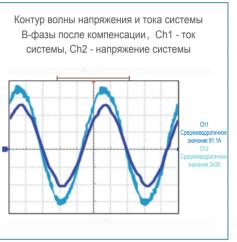
Описание модели

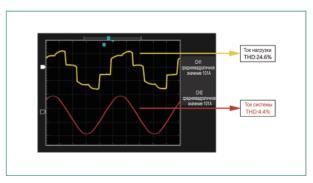

По сравнению с традиционной компенсацией при помощи постоянного конденсатора, переключающего конденсатора с механическим переключением и тиристорного переключающего конденсатора, компенсационное устройство типа IGBT SFR-SVG имеет несравнимое преимущество.

Имеет антигармоническую функцию для обеспечения безопасности системы


SFR-SVG - это управляемый источник тока, который компенсирует только реактивный ток основной волны, а гармонический ток системы не приведет к повреждению компенсационного оборудования, что продлит срок его службы и уменьшает объем работы по техническому обслуживанию. В то же время можно избежать усиления гармоник из-за последовательного включения конденсаторного блока реактора, чтобы предотвратить повреждение другого оборудования и компенсационного оборудования системы из-за перенапряжения гармоник.


Динамическая непрерывная плавная компенсация и высокая скорость отклика лучше компенсируют вспышку напряжения


SFR-SVG может следить за изменением нагрузки, непрерывно динамически компенсировать коэффициент мощности, выводить реактивную мощность и поглощать её , полностью исключая ситуацию возникновения реактивной мощности.



Динамическая компенсация гармоник выполняется при компенсации реактивной мощности, эффективно управляются 3, 5, 7, 9, 11 и 13 гармоники

Характеристики источника тока, выходной реактивный ток не зависит от напряжения на шине, традиционный SVC имеет характеристики реактивного сопротивления, выходной ток линейно уменьшается с напряжением на шине

SFR-SVG имеет большие преимущества для контроля напряжения: чем ниже системное напряжение, тем больше требуется динамическое реактивное напряжение. Выходной реактивный ток SFR-SVG не зависит от системного напряжения, а чем ниже системное напряжение, тем больше уменьшается способность выходного реактивного тока SVC.

Напряжение системы (р.u.) 1.0 ТSC ТСR STATCOM Мндуктивный ток (Опережающий) (Запаздывающий)

Время динамической компенсации быстрее

Время отклика SFR-SVG менее или равно 5 мс.

SFR-SVG может преобразовать емкостную реактивную мощность в индуктивную реактивную мощность за очень короткое время, и быстрая компенсационная скорость может быть полностью удовлетворить компенсации ударного нагрузки.

Меньшая потребность в занимаемой площади

Режим работы и стандарт исполнения

Источник гармоник	Контур волны и векторная диаграмма	Описание
Режим работы холостого хода	Без тока U ₁ U _s U _s U _l U _l	UI=US,IL=0;SFR-SVG не поглощают реактивную мощность
Емкостный режим работы	Опережающий ток Us jXl UI UI UI	UI> US, k является опережающим током, и его амплитуду можно непрерывно контролировать путем регулирования UI, для непрерывного регулирования реактивной мощности, генерируемой SFR-SVG.
Индуктивный режим	Запаздывающий ток Us Us Us Us Us jxl (C) U₁ <us< td=""><td>Ui <us, k="" sfr-svg,="" td="" запаздывающим="" и="" контролироваться.<="" может="" мощность,="" непрерывно="" поглощаемая="" реактивная="" током,="" является=""></us,></td></us<>	Ui <us, k="" sfr-svg,="" td="" запаздывающим="" и="" контролироваться.<="" может="" мощность,="" непрерывно="" поглощаемая="" реактивная="" током,="" является=""></us,>

- «Нормы на электрическое проектирование гражданских зданий» JGJ/T16-92
- «Правила электрического оборудования для низковольтных пользователей» DGJ08-100-2003
- «Проектные правила по распределению электроэнергии низкого напряжения» GB50054-95
- «Проектные правила системы электроснабжения и распределения» GB50025-95
- «Качество электроэнергии. Допустимое отклонение напряжения питания» GB / T15945-1995
- «Качество электроэнергии. Допустимое отклонение частоты системы напряжения» GB12326-2000
- «Качество электроэнергии. Колебание и мерцание напряжения питания» GB / T14549-93
- «Качество электроэнергии. Допустимая несбалансированность трехфазного напряжения» GB / T15543-1995
- «Технические мероприятия по техническому проектированию национального гражданского строительства по энергосбережению»

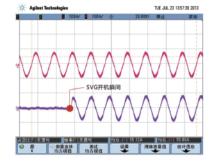
Технические параметры

функция	Норма продукции	Настенный	Настенный тип Модуль типа стойки				Полный шкафный тип			
	Номинальное напряжение (B)					AC380B±15%, AC690B±15%				
	Рабочая частота (Гц)						50Г	ц± 5%		
	Компенсационная способность (квар) Диапазон регупировки реактивной мощности Можно непрерывно преобразоват		75A инальн		150А	150А 200А 100~500А ивную мощность в номинальную емкостную мощнос				
Электрические характеристики	Время отклика		5мс							100~500A ную емкостную мощность даптивного регулирования 5/232 и шина САN См. емкость шкафа вля ованиям
ларакториотики	Потеря активной мощности				<3%	при но	миналь	ной мощности г	иодуля	шкафный тип 100~500A пьную емкостную мощност адаптивного регулировани 485/232 и шина САN См. емкость шкафа ателя ебованиям
	Способность к перегрузке						1	20%		
	Режим совместной работы нескольких устройств	Параллельная работа								
	Среднее время наработки на отказ	время наработки на отказ ≥ 100 000 часов								
	Частота переключения	Средняя частота переключения -10 кГц								
	Алгоритм управления	Алгоритм компенсации вектора экранирования частотной области со способностью адаптивного регулирования								
Локальная защита	Контроллер					Циф	ровой к	онтроллер DSP		
	Способность связи	Применяется протокол дистанционной связи Modbus, интерфейс связи RS485/232 и шина CAN								
	Контрольное соединение	в Волокно-оптическое или электрическое соединение								
	Размеры Ш * В * Г (мм)	510×218×69)4	500× 265	×530	510×26	65×530	340×629×709	340×920×709	См. емкость шкафа
	Класс защиты			IP21 или з	ваказа	гь в сос	тветств	ии с потребнос	тями пользовате	еля
Конструктивные	Цвет	RAL7035 (светло-серый), можно предоставить другие цвета по требованиям							ованиям	
особенности	Метод охлаждения	Принудительное воздушное охлаждение								
	Цельная конструкция						Напо)ЛЬНЫЙ		
	Способ установки		Внутр	енний мон	таж, м	ОЖНО ВІ	ыбрать	способ закрепл	ения, тип ввода	кабелей
	Температура окружающей	і среды					-10	~40°C		
Условия	Температура хранения						-40	~65 C		
окружающей среды	Относительная влажность	.						нденсационных	'	
	Высота над уровнем моря	1	Вь					огласно ГОСТ (ивается на каж	GB / Т3859.2, дые 100 м, мощі	ность
Электромагнитная совместимость						Соотв	етствие	GB / T7251-200)5	

Таблица быстрого выбора

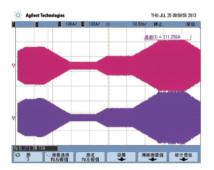
Мощность трансформатора (кВА)	Мощность и количество активных фильтров (трехфазный четырехпроводный)	Мощность и количество активных фильтров (трехфазный трехпроводный)
200	SFR-APF4-100/0.4	SFR-APF3-100/0.4
250/315	SFR-APF4-100/0.4	SFR-APF3-100/0.4
400	SFR-APF4-150/0.4	SFR-APF3-200/0.4
500/630	SFR-APF4-200/0.4	SFR-APF3-300/0.4
800	SFR-APF4-250/0.4	SFR-APF3-400/0.4
1000	SFR-APF4-300/0.4	SFR-APF3-500/0.4
1250	SFR-APF4-400/0.4	SFR-APF3-300/0.4 ×2
1600	SFR-APF4-250/0.4 ×2	SFR-APF3-400/0.4 ×2
2000	SFR-APF4-300/0.4 ×2	SFR-APF3-500/0.4 ×2
2500	SFR-APF4-400/0.4	SFR-APF3-400/0.4 ×3
Сфера применения	Коммерческий центр, офисное здание, гостиница, больница, центр данных, театр и другие места однофазной нагрузки	Химическая промышленность, металлургия, связь, текстиль, бумага, печать, табак, автомобили, порты и другие места трехфазной нагрузки

Примечание: Типы M, B и G могут быть выбраны в соответствии с полем ситуации

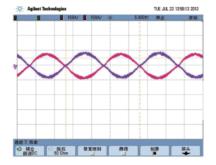

www.sfere-ele

13

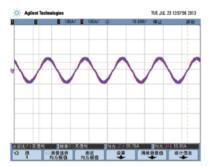
Компенсационный эффект


Быстрый отклик

SFR-SVG полностью компенсирует реактивную мощность системы в момент включения


Отслеживание в реальном времени

SFR-SVG может динамически осуществить компенсацию в реальном времени в соответствии с изменениями реактивного тока системы


Идеальная компенсация

SFR-SVG испускает обратный компенсационный ток, который по фазе равен реактивному току системы.компенсация

Обратное перекрытие

После изменения направления тока компенсации реактивный ток системы полностью перекрывается с реактивным током, генерируемым SVG.

Анализ прикладной области

Электрическая железная дорога и рельсовый транспорт

Электросистема высокоскоростной железной дороги и рельсового транспорта используют большое количество кабелей для передачи энергии, что создает следующие угрозы для сети:

- •Возникает большое количество емкостной реактивной мощности, а коэффициент мощности слишком низкий
- •Увеличение конечного напряжения
- •Существует риск резонанса с системой

Тяжелые промышленные места, такие как подъемники и прокатные станы

Подъемник и прокатные станы являются типичными ударными нагрузками, в основном в различных горнодобывающих и металлургических отраслях, которые оказывают следующие воздействия на электросеть:

- •Влияние реактивной мощности значительное, вызывает колебание напряжения электросети, что серьезно мешает работе другого оборудования и снижает эффективность производства.
- •Коэффициент мощности слишком низкий, и каждый месяц требуется большое количество реактивных штрафов.
- •Некоторые устройства генерируют гармоники и ставят под угрозу безопасность электросети

Система питания бурения

Основные нагрузки системы электроснабжения платформы бурения нефтяных и газовых скважин включают лебедку, роторный стол, буровой насос и так далее. Из-за особенностей условий бурения данная система представляет собой типичную ударную нагрузку, которая оказывает следующие воздействия на электросеть:

- •Большое влияние реактивной мощности и низкий коэффициент мощности
- •Большое содержание текущей гармоники
- •Сильные колебания напряжения и скорость изменения напряжения, влияющие на питание различных систем, таких как системы управления, ПЛК и так далее

Модуль конденсаторов низкого напряжения с функцией подавления гармоник серии SFR-M

Общие сведения

Интеллектуальные низковольтные конденсаторные модули с динамическим подавлением гармоник серии SFR-M, представленные компанией, специально разработаны для решения проблем гармоник и коэффициента мощности в сетях низкого напряжения. Использование конденсаторных модулей позволяет уменьшить гармонические искажения и увеличить коэффициент мощности в распределительной сети низкого напряжения 0,4 кВ.

Описание модели

Технические параметры

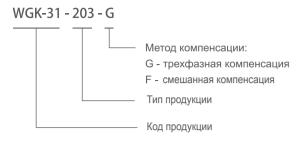
Параметры	Значение				
	Ток	≤1.0% (5%~120% ln)			
Точность измерения	Напряжение	≤0.5% (80%~120% Un)			
	Температура	≤±1℃			
Способ включения и выключения		Включение и выключение при прохождении тока через нуль			
	Рабочее напряжение	Переменное 380B±20%			
Компенсационная	Рассеиваемая мощность	≤5 BA			
эксплуатация	Потребляемая мощность	1.35*In			
	Импульсный ток включения и выключения	≤2√2*In			
	От перенапряжения	430В (настраиваемое)			
Защита главного модуля	От пониженного напряжения	300В (настраиваемое)			
	От превышения гармонической волны	0%-100% (настраиваемое)			
	От сверхтока	0-100А (настраиваемое)			
Местная защита	От перегрева	55 ⊂ (настраиваемое)			
	От дисбаланса	50% (настраиваемое, только рассчитывается на общую компенсацию)			
Интерфейс создания сети		Линия данных, протокол внутреннего создания сети			
	Габаритные размеры	280мм×290мм×370(430)мм			
Механический монтаж	Монтажные размеры	295мм×350(410)мм			
	Bec	≤45кг			
Температура окружающей	Рабочая температура	-15°C-45°C			
среды	Температура хранения	-25 °C -55 °C			
Высота над уровнем моря		≤2000m			
Применимый стандарт		GB/T 15576-2008			

Выбор продукции

Выбор серии SFR-M (Пример: берём 7% коэффициента реактивной мощности)

Метод компенсации	Мощность (кВАр)	Тип	Место применения
	50	SFR-MXD-50-P7/480	
	25+25	SFR-MXD-2525-P7/480	Используется при
	40	SFR-MXD-40-P7/480	нелинейных нагрузках,
	20+20	SFR-MXD-2020-P7/480	таких как инверторы,
Трехфазная	30	SFR-MXD-30-P7/480	индукционные печи,
компенсация	20+10	SFR-MXD-2010-P7/480	источники бесперебойного
	20	SFR-MXD-20-P7/480	питания, прокатные станы,
	10+10	SFR-MXD-1010-P7/480	освещение и так далее,
	15	SFR-MXD-15-P7/480	которые либо вырабатывают большое
	10+5	SFR-MXD-1005-P7/480	количество реактивной
	10	SFR-MXD-10-P7/480	мощности, либо
Милирилуолино	30	SFR-MXD-30-P7/480	чувствительны к
Индивидуальная	20	SFR-MXD-20-P7/480	гармоникам.
компенсация	10	SFR-MXD-10-P7/480	

Типовое исполнение


Вариант Содержание	Гибридная компенсация, переключение через ноль, подавление гармони					
	(A) [K]	0.4кВ				
Схема первичного соединения	F 1	QC				
Компенсационная емкость (квар)	Общая мощнос (общая компенса +отдельная компен	ть 240квар ция 150 квар нсация 90квар)				

Список конфигурации

Вариант	Тип	Количество
Разъединитель типа предохранителя	630A	1
Контроллер	WGK-31-203-F	1
Индикатор состояния	WGK-31-ZTA	1
Амперметр	PA194 I- 9X4	1
Трансформатор тока	SHI 500/5	3
Микровыключатель	160A	1
Устройства защиты от перенапряжений	SDX54/4P	1
Модуль общей компенсации	SFR-MXD-30-P7/480	5
Модуль индивидуальной компенсации	SFR-MXD-30-P7/280	3
Корпус шкафа (GCJ)	1000×1000×2200 (мм)	1

В примере используется интеллектуальный конденсаторный модуль с динамическим подавлением гармоник реактивной мощности, оснащенный контроллером WGK-31-203, который определяет емкость компенсации и коэффициент реактивной мощности в соответствии с требованиями, чтобы повысить коэффициент мощности системы и подавлять гармонические колебания. Контроллер может управлять 32 модулями компенсации. Если необходимо увеличить емкость компенсации, можно увеличить количество модулей динамической компенсации и изменить спецификации выключателя типа предохранителя.

Типовое исполнение

Технические параметры

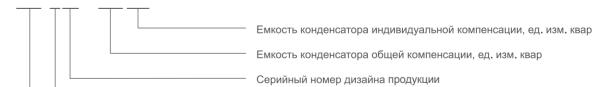
Параметры		Значение		
	Диапазон измерения напряжения	Фазное напряжение 20-220В или линейное напряжение 20-480В		
	Перегрузка	Длительная: в 1,2 раза, мгновенная: в 2 раза		
	Потребляемая мощность	<1VA		
Вход сигналов	Диапазон измерения тока	5A		
	Перегрузка	Длительная: в 1,2 раза, мгновенная: в 2 раза		
	Потребляемая мощность	<1VA		
	Частота	45-65Гц		
Источник питания		AC/DC 80-270B		
Связь		Подключение выполняется с помощью кабелей сети RJ45, которые могут помогать осуществить управление 32 модулями максимально серии SFR-M.		
Пва выхола сиг	ТЭПИЭЭПИИ	Из реле сигнализации с программным управлением		
Два выхода сигнализации		Емкость 3A/250B AC (3A/30B DC)		
Класс измерения		Ток: класс 0,5 (20%-120%), класс 1,0 (5%-20%)		
		Напряжение: класс 0,5 (50%-120%), класс 1,0 (5%-50%)		
		Мощность: класс 1,0		
		Частота: ±0,1 Гц		
		Класс измерения гармонической волны: Б		
П×		Жидкокристаллический: 128*64 LCD,		
Дисплей		контрастность может быть регулируемой.		
Класс защиты		Передняя панель - IP65, задняя - IP30		
Окружающая среда		Рабочая температура: -15-55 ℃ Температура хранения: -20 ℃-7		
		Изоляция: сопротивление источника сигнала, источника питания		
Безопасность		и выходной клеммы по отношению к корпусу >100М Ω		
Dosonaonoon		Прочность на напряжение: вход сигнала, источник питания,		
		выход > АС 2кВ		
Внешний вид		Размер: 120×120×114mm Вес: 0,6кг		

Модуль силовых конденсаторов низкого напряжения серии SFR-L

Общие сведения

Низковольтный конденсаторный модуль серии SFR-L - это устройство компенсации реактивной мощности нового поколения для низковольтной распределительной системы 0,4 кВ, обеспечивающее высокую эффективность, экономию энергии, снижение потерь в сети, повышение коэффициента мощности и качества электроэнергии. Эта серия продукции в основном используется в местах, где гармонические искажения не является серьезными.

Данная продукция состоит из интеллектуального измерительного и контрольного блока, цепи тиристорного комбинированного выключателя, автоматического микровыключателя с высокой отключающей способностью, двух самовосстанавливающихся силовых конденсаторов типа △ или одного самовосстанавливающегося силового конденсатора типа Y, а также коммуникационного модуля. Модуль является современной заменой традиционных установок компенсации реактивной мощности.



Описание типа

SFR - L XD - 20G 20F

Наименование компании

Серия силовых конденсаторных модулей

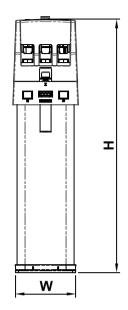
Общие сведения

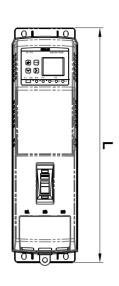
Параметры		Значение
	Ток	≤1.0% (5%~120% In)
Точность измерения	Напряжение	≤0.5% (80%~120% Un)
	Мощность	≤2%
	Коэффициент мощности	≤±0.01
Способ включения и выключения		Включение и выключение при прохождении тока через нуль
	Рабочее напряжение	Переменное 380B±20%, THDu≤5%
VOMEQUICALIMATINA OVORRIVATALIMA	Потребляемая мощность	≤5 BA
Компенсационная эксплуатация	Максимальный рабочий ток	1.35*ln
	Импульсный ток вводимой пиковой величины	≤2√2*In
1	От перенапряжения	430В (настраиваемое)
Защита главного модуля	От пониженного напряжения	300В (настраиваемое)
	От превышения гармонической волны	0%-100% (настраиваемое)
	От сверхтока	0-100А (настраиваемое)
Местная защита	От перегрева	55℃ (настраиваемое)
	От дисбаланса	50% (настраиваемое)
	Контрольные параметры	Коэффициент целевой мощности, порог включения и выключения, выдержка времени
Главный модуль	Внешние параметры	Коэффициент трансформации трансформатора тока
Интерфейс создания сети		Линия данных, протокол внутреннего создания сети
	Габаритные размеры	W-71.5mm L-370mm Высота, обусловленная различной емкостью, приведена в таблице габаритных размеров
Монтаж	Монтажные размеры	Расстояние между монтажными крепежными отверстиями: W-85mm*L-315mm
	Bec	≤6.5кг
Τομπορατίνης οικουνικού μιού οροπιμ	Рабочая температура	-15°C-45°C
Температура окружающей среды	Температура хранения	-25°C-55°C
Высота над уровнем моря		≤2000m
Применимый стандарт		GB/T 15576-2008

Общие сведения

Метод компенсации	Емкость (кВАр)	Тип	Место применения
	40+40	SFR-LXD-4040-/450	
	40+20	SFR-LXD-4020/450	
T	30+30	SFR-LXD-3030/450	Используется в случаях,
Трехфазная	20+20	SFR-LXD-2020/450	когда качество электроэнергии
компенсация	20+10	SFR-LXD-2010/450	соответствует
	10+10	SFR-LXD-1010/450	государственному
	10+5	SFR-LXD-1005/450	стандарту, но требования
Индивидуальная компенсация	30	SFR-LXD-30/250	не высокие, а
	20	SFR-LXD-20/250	оборудование чувствительное к
	10	SFR-LXD-10/250	
	5	SFR-LXD-05/250	гармоникам отсутствует.
Интеграция общей и	40+20	SFR-LXD-40G20F	Компенсация по фазам используется при
индивидуальной	40+15	SFR-LXD-40G15F	дисбалансе трехфазной
компенсации	40+10	SFR-LXD-40G10F	нагрузки более 30%.
(общая компенсация +	30+20	SFR-LXD-30G20F	
индивидуальная	30+10	SFR-LXD-30G10F	
компенсация))	20+20	SFR-LXD-20G20F	

Общие сведения


Схема первичного соединения	Вариант Содержание	Трехфазная компенсация, переключение через ноль
= 4	27.5	QC QC
Компенсационная емкость (квар) Общая мощность 240квар		Общая мощность 240квар


Список конфигурации

Вариант	Тип	Количество
Разъединитель типа предохранителя	630A	1
Контроллер	WGK-31-201-G	1
Индикатор состояния	WGK-31-ZTA	1
Амперметр	PA194I-9X4	1
Трансформатор тока	SHI 500/5	3
Микровыключатель	160A	1
Устройства защиты от перенапряжений	SDX54/4P	1
Модуль общей компенсации	SFR-LXD-2020/450	6
Корпус шкафа (GCJ)	800×800×2200 (MM)	1

В этом примере используется интеллектуальный низковольтный силовой конденсаторный модуль для определения емкости компенсации в соответствии с трансформатором и нагрузочной емкостью. Как правило, компенсируется около 30-40% мощности трансформатора. Если необходимо выполнить индивидуальную компенсацию, можно использовать модуль индивидуальной компенсации. Интеллектуальный низковольтный силовой конденсаторный модуль улучшает коэффициент мощности системы, позволяет осуществлять переключение конденсатора через ноль и передавать данные по порту RS-485 с помощью линии данных RJ45. Если необходимо увеличить емкость компенсации, можно увеличить количество модулей компенсации и изменить спецификацию переключателя типа предохранителя.

Габаритные размеры

Размер изделия	Ш(мм)	В(мм)	Г(мм)	Расстояние между отверстиями(мм)
	Серия общей и	индивидуальной к	омпенсаций	
SFR-LXD-40G20F/40G15F	392	110	423	
SFR-LXD-30G20F/20G20F	392	110	383	70.4272
SFR-LXD-40G10F/30G10F	392	110	363	70×372
SFR-LXD-20G15F/20G10F	392	110	363	
	Серия	я общей компенсац	ии	
SFR-LXD-4040/450	392	110	423	
SFR-LXD-4020/450	392	110	363	70×372
SFR-LXD-3030/450	392	110	363	-
SFR-LXD-2525/2010	370	71.5	332	
SFR-LXD-2020/2010	370	71.5	332	_
SFR-LXD-1510/1005	370	71.5	332	85×315
SFR-LXD-1010/1005	370	71.5	267	03/313
SFR-LXD-0505	370	71.5	227	
SFR-LXD-05025	370	71.5	227	
Серия индивидуальной компенсации				
SFR-LXD-30/250	370	71.5	332	
SFR-LXD-20/250	370	71.5	267	-
SFR-LXD-15/250	370	71.5	267	05.4245
SFR-LXD-10/250	370	71.5	227	85×315
SFR-LXD-05/250	370	71.5	227	
SFR-LXD-025/250	370	71.5	130	-

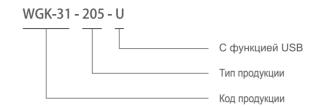
Общие сведения

Вариант,	Трехфазная компенсация, переключение через ноль
Схема первичного соединения	ΦΦ TA FILE O.4KB
Компенсационная емкость (квар)	Общая мощность 240квар

Список конфигурации

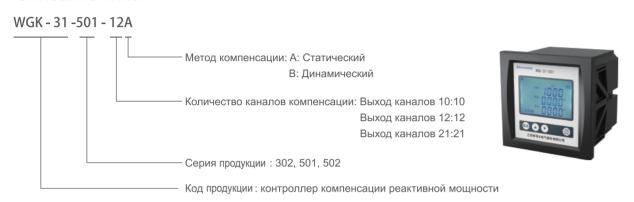
описок конфинурации		
Вариант	Тип	Количество
Разъединитель типа предохранителя	630A	1
Контроллер	WGK-31-201-G	1
Индикатор состояния	WGK-31-ZTA	1
Амперметр	PA194I-9X4	1
Трансформатор тока	SHI 500/5	3
Микровыключатель	160A	1
Устройства защиты от перенапряжений	SDX54/4P	1
Модуль общей компенсации	SFR-LXD-2020/450	6
Корпус шкафа (GCJ)	800×800×2200 (мм)	1

В этом примере используется интеллектуальный низковольтный силовой конденсаторный модуль для определения емкости компенсации в соответствии с трансформатором и нагрузочной емкостью. Как правило, компенсируется около 30-40% мощности трансформатора. Если необходимо выполнить индивидуальную компенсацию, можно использовать модуль индивидуальной компенсации. Интеллектуальный низковольтный силовой конденсаторный модуль улучшает коэффициент мощности системы, позволяет осуществлять переключение конденсатора через ноль и передавать данные по порту RS-485 с помощью линии данных RJ45. Если необходимо увеличить емкость компенсации, можно увеличить количество модулей компенсации и изменить спецификацию переключателя типа предохранителя.


Типовое исполнение

Технические параметры

Параметры		Значение		
	Диапазон измерения напряжения	Фазное напряжение 20-220В или линейное напряжение 20-480В		
	Перегрузка	Длительная: в 1,2 раза, мгновенная: в 2 раза		
	Потребляемая мощность	<1VA		
Вход сигналов	Диапазон измерения тока	5A		
	Перегрузка	Длительная: в 1,2 раза, мгновенная: в 2 раза		
	Потребляемая мощность	<1VA		
-	Частота	45~65Гц		
Источник питания		AC/DC 80~270B		
0		Сетевое соединение RJ45 позволяет управлять до 36 модулей		
Связь		серии SFR-L		
Два выхода сигнализации		Выход из реле сигнализации с программным управлением		
		Емкость 3A/250B AC (3A/30B DC)		
Класс измерения		Ток: класс 0,5 (20%-120%), класс 1,0 (5%-20%)		
		Напряжение: класс 0,5 (50%-120%), класс 1,0 (5%-50%)		
		Мощность: класс 1,0		
		Частота: ±0,1 Гц		
		Класс измерения гармонической волны: В		
		Жидкокристаллический: 128*64 LCD,		
Дисплей		контрастность может быть регулируемой.		
Уровень защиты		Передняя панель - IP65, задняя - IP20		
Окружающая среда		Рабочая температура: -15-55 € Температура хранения: -20 €-75 €		
Безопасность		Изоляция: сопротивление источника сигнала, источника питания		
		и выходной клеммы по отношению к корпусу >100М Ω		
		Прочность на напряжение: вход сигнала, источник питания,		
		выход > АС 2кВ		
Внешний вид		Размер: 120×120×114mm Вес: 0,6кг		



Параметры			Значение		
	Тип соединения		Трехфазный четырехпроводный		
		Диапазон	Фазовое напряжение 20-380В		
	Напряжение	Перегрузка	Непрерывно: 1,2 раза мгновенно: 2 раза		
		Потребляемая мощность	<1BA		
Вход сигнала		Диапазон	5A		
	Ток	Перегрузка	Непрерывно: 1,2 раза мгновенно: 2 раза		
		Потребляемая мощность	<1BA		
	Частота		45∼65 Гц		
Питание			AC/DC 80~270B		
Импульс элект	роэнергии		80mc±20%		
	Внутренняя		Сетевое соединение RJ45 позволяет управлять до 36 модулей серии SFR-L		
Связь	Внешняя		Поддержка протокола MODBUS-RTU и протокола DL/T 645-2007,		
	внешняя		скорость связи составляет 1200 ~ 9600		
Сигнопиозния			Емкость выходного контакта двухканального программируемого		
Сигнализация	Сигнализация		реле сигнализации 3A/250VAC (3A/30VDC)		
Телеизмерения	A		8-канальный вход сухого контакта, который может быть связан с выходом сигнализации		
Хранение данных			Запись журнала работы за 3 месяца, которую можно передавать с помощью диска U		
			Ток компенсации: класс 0,5 (20%~120%), класс 1,0 (5%~20%)		
			Измерение количества электричества вводного шкафа: 0.5S		
Класс измерен	Р		Активная энергия вводного шкафа: 0.5S		
			Реактивная энергия вводного шкафа: 1.0S		
			Частота: ± 0,1 Гц		
			Гармоническое измерение: с 1 по 31 гармонику по классу В		
Дисплей	Дисплей		ЖК-дисплей: 128 X 64 LCD, регулируемая контрастность		
Уровень защиты			IP65 передняя панель, IP30 сзади		
Окружающая среда			Рабочая температура: -15-55 ℃		
			Температура хранения: -20 ℃-75 ℃		
			Изоляция: сопротивление источника сигнала, источника питания		
Безопасность		_	и выходной клеммы по отношению к корпусу >100М Ω		
			Прочность на напряжение: вход сигнала, источник питания, выход > АС 2кВ		
Внешний вид		_	Размер: 120×120×114мм		
опошния вид			Вес: 0,6кг		

Контроллер компенсации реактивной мощности серии WGK-31

Описание типа

Особенности продукции

- Полностью цифровой дизайн с алгоритмом отбора проб переменного тока;
- Интерфейс «человек-компьютер» использует четырехзначный светодиодный цифровой дисплей или жидкокристаллический дисплей с большим ЖК-дисплеем;
- Модульная сборка, привлекательный дизайн;
- Со стандартным интерфейсом шины RS-485, поддержкой протокола связи Modbus-RTU;
- Отображение в реальном времени напряжения, тока, коэффициента мощности, активной мощности, реактивной мощности, гармонического напряжения, гармонического тока, состояния переключения частоты и емкости, температуры и других параметров;
- Гармоническая функция защиты;
- Можно настроить целевой коэффициент мощности соѕф в диапазоне 0,80 (гистерезис) 1-0,80 (опережнение);
- Ручное/автоматическое переключение;
- Поддержка изохоры, кодирования и нечетких методов переключения управления;
- После прерывания сети более чем на 15 мс происходит сброс напряжения;
- Выходная мощность каждого выходного контура может быть настроена одновременно.

Размер продукции

Ед. изм.:мм

Источник гармоник	Размер лицевой рамки	Сборочный размер экрана	Глубина монтажа	Размер отверстия
501	120×120	112×112	105	113×113
502	120×120	112×112	105	113×113
302	120×120	110×110	65	111×111

Технические параметры

Параметры	Значение
Режим отображения	LED или LCD
Напряжение выборки	400В или 220В
Рабочее напряжение	АС220В или от входного сигнала напряжения
Номинальное количество сегментов	10 сегментов/12 сегментов/21 сегмент
Номинальный вход	5A
Диапазон настройки коэффициента мощности	0,8 (индуктивный) - 0,95 (емкостный)
Диапазон настройки времени ввода	0,1 c - 99,9 c
	Поддержка изометрии/кодирования (1: 2: 2, 1: 2: 3, 1: 2: 4: 8)
Процедура управления переключением	и способ нечеткого управления переключением
Режим работы	Ручная/автоматическая компенсация
Гармоника	С функцией гармонического измерения и защиты
Интерфейс связи	Интерфейс связи стандартной шины RS-485, Modbus-RTU на месте работы
Способ установки	Панельный монтаж

WGK-31-501 терминальное определение

Номер терминала	Состояние	Описание .	Примечание	
1,2	Вход	Вход трансформатора тока выборки	От трансформатора фазы А главного экрана	
3,5	Вход	Вход напряжения выборки 400В	От фаз В и С	
4,6		1	Свободный зажим	
7,8	Вход	Вход рабочего питания	220В переменного тока	
9	Выход	Ввод электропитания контактора	С питающим проводом	
10~21	Выход	Выходной порт с первого по двенадцатый	Катушка контактора переменного тока	
24~25		Интерфейс связи	Протокол MODBUS	

WGK-31-502 терминальное определение

Номер терминала	Состояние	Описание	Примечание
1,2,3,4,5,6	Вход	Вход трансформатора тока выборки	Вход трансформатора тока выборки
7,9,11,12	Вход	Вход напряжения выборки 220В	Вход напряжения выборки 220В
8,10	1	1	1
13,14	Вход	Вход рабочего питания	220В переменного тока
15	Выход	Выход питания постоянного тока +12В	Выход питания постоянного тока +12В
16~27	Выход	Выходной порт с первого по двенадцатый	Выходной порт с первого по двенадцатый
30~31		Интерфейс связи	Протокол MODBUS

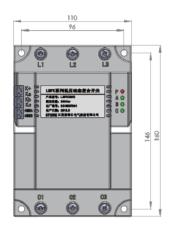
WGK-31-302 терминальное определение

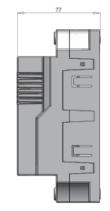
Номер терминала	Состояние	Описание	. Примечание
1,2	Вход	Электропитание	AC / DC80 ~ 270B
4,5,6,7,8,9	Вход	Сигнал тока	4, 6, 8 - трехфазные токовые входящие концы
11,12,13,14	Вход	Сигнал напряжения	Ввод трехфазного напряжения, А, В, С
20~41	Выход	Выход управления	12/21-канальный выход управления, 20 - общий конец
58,59,60		Один канал RS485	A +, B-, G соответственно
04.04	_	Сигнализация	Двухканальный релейный выход (81, 82)
81~84	Выход	Вход выключателя	и (83, 84)/21В с данной функцией
70.74		Датчик температуры PT100	Вход четырехканального выключателя,
70~74	Вход		70 - общий конец/21В + с данной функцией
61,62	Вход		Выбираемая деталь/21В + с данной функцией

Низковольтный комбинированный выключатель серии LBFK

Общие сведения

Низковольтный комбинированный выключатель серии LBFK представляет собой устройство с параллельным соединением тиристора с магнитным удерживающим реле, управляемое внутренним одночиповым микрокомпьютером. В момент включения и отключения тиристор выполняет переключение через нуль, то есть в момент напряжения через нуль - включение, а в момент тока через нуль - отключение. Время срабатывания тиристора очень короткое (без тепловыделения), после чего устройство работает за счет включения магнитного удерживающего реле. В связи с этим выключатель серии LBFK обладает следующими преимуществами: отсутствие пускового тока и отсутствие задержки при работе контактора переменного тока. Кроме того, устраняются дефекты нагрева тиристора и искры переключения контактора. Магнитное удерживающее реле не имеет пускового тока и искры в момент срабатывания и отключения, его электрический срок службы значительно выше расчетного, а его механический ресурс может достичь миллиона раз, что может гарантировать длительную работу.


Типовое исполнение



Технические параметры

Параметры	Значение			
Номинальное напряжение	Линейное напряжение переменного тока 380B ± 20%			
Номинальная частота	50Гц			
Гармоническое искажение	≤5.0%			
Емкость переключения	5-40 квар			
Управляющее напряжение	DC12V±10%/10MA			
Потребляемая мощность	≤4BA			
Контактное сопротивление	≤2mQ			
Температура окружающей среды	-25 °C ~ +55 °C			
Количество переключений	1,2 млн. раз			
Высота над уровнем моря	≤2000m			

Габаритный размер

Метод соединения:110×77×160мм(Ш×В×Г)

Установочный размер: 96×146мм(Ш×В); Используется винт М5×20

Метод соединения

	Порт	Описание
	L1,L2,L3	Вводный конец
Главная цепь	C1,C2,C3	Подключена к клемме конденсатора (или последовательному реактивному сопротивлению)
Связь Modbus	485A	Интерфейс связи А
CBR36 MOUDUS -	485B	Интерфейс связи В
	К + клемма	Положительная клемма управляющего напряжения подключена к клемме COM контроллера
Цепь управления (тип G)	клемма Ка	Отрицательная клемма управляющего напряжения подключена к каждому выходу контроллера
-	клемма Kb	Свободна
	клемма Кс	Свободна
	К + клемма	Положительная клемма управляющего напряжения
Here verseres (zuz E)	клемма Ка	клемма управления фазой А
Цепь управления (тип F) -	клемма Kb	клемма управления фазой В
	клемма Кс	клемма управления фазой С

Примечание: Индикатор Р является индикатором источника питания. Когда на главную цепь подается питание, индикатор горит, а в противном случае он не загорается.

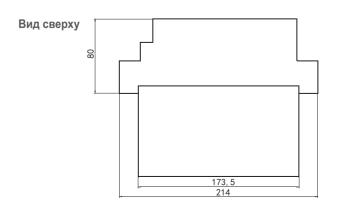
При переключении типа G, индикаторы A, B, C означают индикацию переключения. При включении индикаторы горят, а в противном случае они гаснут.

При переключении типа F, индикаторы A, B, C означают индикацию трехфазного переключения соответственно. При включении индикаторы горят, а в противном случае они гаснут.

Блок динамического переключения серии LBT

Общие сведения

Блок динамического переключения серии LBT предназначен для бесконтактного высоконадежного быстрого переключения в оборудовании с динамической компенсацией коэффициента мощности. Особенно эффективно использовать блоки в местах, где необходимо быстрое переключение. Типовые варианты использования: подъемное оборудование, лифты и сварочное оборудование, где реактивная мощность часто изменяется.


Типовое исполнение

LBT 50 / G

Метод компенсации: G - трехфазная компенсация F - индивидуальная компенсация Емкость переключения (кВар)

Технические параметры

Параметры	Значение
Рабочее питание	AC220V±20%
Емкость переключения	15∼50κBap
Напряжение управления	5~15B DC
Время включения	≤20mc
Выдерживаемое напряжение контакта	1600B
Метод охлаждения	Активное воздушное охлаждение
Температура окружающей среды	-25°C ~ +70°C
Влажность окружающей среды	≤85%
Максимально допустимая высота над уровнем моря	≤2000 м (для высоты 5000м можно заказать)
Срок службы	106 циклов
Габаритные размеры	116 (Ш) ×214 (В) × 186 (Г) (ед. изм.: мм)
Размер монтажного отверстия	35 (Ш) ×198 (В) (ед. изм.: мм)

Конфигурация и выбор типа

Шкаф компенсации гармонических искажений обычно оснащен типом H и выбранным типом (трехфазная общая компенсация)

Un = 400B, Fn = 50Гц, P = 7% (коэффициент реактивной мощности P5.5, P12.5 может ссылаться на следующее)

Мощность трансформатора (кВА)	Компенсационная емкость(кВар)	Количество каналов компенсации	Контроллер компенсации реактивной мощности	Рубильник (A)	Выбор типа SLG + LBT		Рекомендуемые размеры корпуса шкафа W×D×H (mm)
630	200 6			400	4×SLG25-P7/400	4×LBT25/G	1000×800×2200
030	200	0		400	2×SLG50-P7/400	2×LBT50/G	1000 \ 600 \ 2200
800	240	6	WGK-31-501-10B	630	6×SLG40-P7/400	6×LBT40/G	1000×800×2200
1000	300	6	-	630	6×SLG50-P7/400	6×LBT50/G	1000×800×2200
1250	360	9		800	9×SLG40-P7/400	9×LBT40/G	1000×800×2200
1250	400	8		800	8×SLG50-P7 /400	8×LBT50/G	1200×1000×2200
1600	240×2	12	WCV 21 F01 12D	630×2	12×SLG40-P7/400	12×LBT40/G	1000×800×2200 (×2)
2000	300×2	12	WGK-31-501-12B	630×2	12×SLG50-P7/400	12×LBT50/G	1000×800×2200 (×2)
2500	360×2	18	WCK 21 F01 10D	800×2	18×SLG40-P7/400	18×LBT40/G	1000×800×2200 (×2)
2500	400×2	16	WGK-31-501-10B	800×2	16×SLG50-P7/400	16×LBT50/G	1200×1000×2200 (×2)

Рекомендуем согласовывать необходимые спецификации! Если компенсационная мощность превышает 300 квар, то рекомендуется разделять на основной и вспомогательный шкафы.

Обычная конфигурация и выбор шкафа компенсации подавления гармоник (трехфазная общая компенсация + однофазная индивидуальная компенсация)
Un = 400B(Однофазный 230B), Fn = 50Гц, P = 7% (коэффициент реактивной мощности P5.5, P12.5 м

Un = 400B(Однофазный 230B), Fn = 50Гц, P =7% (коэффициент реактивной мощности P5.5, P12.5 может ссылаться на следующее)

Мощность Компенсацион трансформатора		ционная Контроллер компенсации	Часть общей ко	мпенсации	Часть индиви компенс	Рекомендуемые размеры корпуса шкафа	
(кВА)	емкость (кВар)	реактивной мощности	SLG	LBT	SLG	LBT	W×D×H (mm)
315	100(30)	WGK-31-502-12B	2×SLG15-P7/400 2×SLG20-P7/400	2× LBT15/G 2× LBT20/G	3×SLG10-P7/230	1× LBT30 /F	1000×800×2200
630	180 (60)	WGK-31-502-12B	4×SLG15-P7/400 2×SLG30-P7/400		3×SLG20-P7/230	1× LBT60 /F	1000×800×2200
800	240(90)	WGK-31-502-12B	5×SLG30-P7/400	5× LBT30/G	3×SLG10-P7/230 3×SLG20-P7/230	1× LBT30 /F 1× LBT60 /F	1000×800×2200
1250	360(120)	WGK-31-502-12B	6×SLG40-P7/400	6× LBT40/G	6×SLG20-P7/230	2× LBT60 /F	1200×1000×2200

Обращайтесь за консультацией для выбора правильной спецификации!

Микропроцессорное устройство релейной защиты

Общие сведения

Устройство интегрирует передовые технологии и использует 32-битный микроконтроллер на базе ядра ARM9. Оборудование имеет современный внешний вид, компактные размеры, широкоэкранный ЖК-дисплей, простоту в управлении. Мощная интегральная функция поможет сосредоточить защиту, измерение, контроль, мониторинг, связь, поиск неисправностей, запись событий и другие функции в одном устройстве. Устройство высокоточно измеряет ток, напряжение, мощность, коэффициент мощности, частоту, ток нулевой последовательности, учитывает электроэнергию, записывает 256 событий. Память устройства не будет потеряна во время пропадания питания.

Применение

Система управления энергией
Заводские автоматические системы
Промышленное оборудование
Распределительные устройства
Интеллектуальные распределительные системы
Интеллектуальные здания

Особенности

Защитная функция
Многоконтурный контроль состояния
Мощная функция самопроверки

Сравнительная таблица

33

Тип защиты	SDP-5100F1-A	SDP-5100F2-A	SDP-5100F3-A	SDP-5100PT-A
Максимальная токовая защита 1 ступени		100		
Максимальная токовая защита 2 ступени	-			
Максимальная токовая защита 3 ступени				
Сверхток отрицательной последовательности секции 2				
Защита от зависимой характеристики времени				
Составное напряжение				
Низкое напряжение по направлению				
Защита зарядки				
Перегрузка				
Ток нулевой последовательности				
Ток нулевой последовательности 2				
Направление нулевой последовательности				
Низкочастотное снижение частоты				
Защита от зависимой характеристики времени нулевой последовательности низкого напряжения				
Повторное включение				
Перенапряжение				
Низкое напряжение				
Секция ускорения				
Контроль TV				
Контроль ТА				
Перенапряжение нулевой последовательности				
Автоматическое включение ввода				
Защита от блокировки большого тока				
Защита от высокой температуры				
Защита от газа				
Заземление TV				
Параллель TV				
Защита от неэлектрической величины	•			
Обрыв цепи управления				
Неисправность устройства	-			

Примечание: знак"∎"означает то, что в конфигурации продукции имеется данная функция защиты

РЕАЛИЗОВАННЫЕ ПРОЕКТЫ

Проект пекинской компании Kehua Zhongsheng Тайюань железо и сталь (Group) Co, Ltd Network Cloud Computing Engineering

Приморский центр Жэньхэн

Приморский центр Жэньхэн

Далянь Ванда Плаза

Проект реконструкции и расширения строительства XCMG

Первая народная больница провинции Юньнань

Внутренняя Монголия Wuhai Химическая промышленность Co., Ltd.

Проект по расширению производства твердых лекарств Lijun 12 миллиардов

Муниципальное правительство района Пингу в Пекине

Синьцзян Хами Электростанция

China Power Investment Ланьчжоу новый район когенерации проекта